I. Yemadi yu melni $ax+b \leq 0$ wala $ax+b \geq 0$ ou $ax+b \leq 0$ wala $ax+b > 0$
Bépp yemadi bu mel nònu man na ñu ko soppali bamu mel ni :
$$x \leq k \text{ wala } x \geq k \text{ wala } x \leq k \text{ wala } x > k$$
Sottali yu yemadi gògu man na ñu ko mandargaal ci bènn rëdd wu ñu maaska wala ñu joxe ko ci anamu ay digante (intervalles).
Ab misaal$2x-6 \leq 0$
$2x \leq 6$
$x \leq \dfrac{6}{2}$
$x \leq 3$
II. Yemadi yi melni $ax+b \leq cx+d$ ($\leq$ ou $\geq$ wala $\leq$ ou $>$)
Bépp yemadi bu mel ni $ax+b > cx+d$ man na ñu ko soppali bamu mel ni : $ax \leq b$ wala $ax \geq b$ wala $ax \leq b$ wala $ax > b$.
Ab misaal$2x+5 > x+4$
$2x-x > 4-5$
$x > -1$
III. Kureelu 2 yemadi yu am bènn deetxam
Bènn kureelu $2$ yemadi yu am $1$ deetxam ñu ngi yemook $2$ yemadi yu ñu dajaleek bènn laafaleek ubbi (parenthèse ouvrante).
Sottali bènn kureelu 2 yemadi
Da ñuy sottali yemadi bènn bènn. Ñu fësal selebeyoonu (intersection) $2$ sottali yi ñu am be noppi ñu binnd mbooloom sottalim kureel gi.